

 Backstory
 RAMP was the first Doom community project I ran, held during June and
 July 2021. The idea was to encourage beginners to create things and let
 them contribute to a collaborative project right away - and I was also
 interested in experimenting with some ideas I hadn’t seen people try in
 Doom projects before. This is the story of how it was pieced together!

 The Dawning of Doom
 The first time I encountered Doom, I must have been about eleven years
 old (and don’t worry, you’re not going to get my entire life story here). It
 was 1994, and the best computer in the house was my dad’s 66MHz 486
 that had a newly installed double speed CD-ROM drive.

 My siblings and I shared a last-generation computer, and up until then our
 PC games had usually come from magazine coverdisks or whatever
 floppy disk sized ZIPs my dad had found in the shareware libraries he had
 access to at the university where he lectured. But now with the advent of
 CD-ROM, an unimaginable amount of content was available to us - my
 dad would vet games from CD collections on his computer and then copy
 them across to ours via a cumbersome cassette-based device called a
 TapeXchange 1 (also borrowed from the university).

 On one occasion, I remember a group of us huddled around the computer
 looking at the menu of the latest CD we’d acquired - all four of the siblings
 and my uncle Brian, with my dad at the keyboard. On the list was a new
 game that was the talk of every computer magazine at that moment, and I
 just had to insist my dad tried it first.

 I had grown up with Apogee Software’s shareware as my primary source
 of computer entertainment, and we had recently discovered and got into
 playing Blake Stone. But when Doom started up for the first time, what I
 was seeing was on a level so far from any of those that it was
 unimaginable - the player’s view bobbed as he walked, the rooms were all

 1 https://www.atarimagazines.com/compute/issue153/98_Interpreter_TapeXcha.php
 2

 dynamically shaped instead of on a grid, you could even go up and down
 stairs! We watched as my dad carefully piloted Doomguy up to the armour
 and back, wondering aloud how to fire the pistol hovering in the middle of
 the screen. I suggested the Ctrl key because most of the Apogee games
 defaulted to that, and sure enough, he was able to destroy the stationary
 target of the barrel with no problem. Emboldened, he opened the door
 and took on the first enemies of the easiest game mode in the large
 computer room, then proceeded through to the next part of the base
 where he instantly fell into the unhealthy-looking green stuff.

 I remember Brian leaning over his brother’s shoulder and saying “Looks
 like you’re nae daein’ too guid, there, Robert” as his character floundered
 in the nukage, the face at the bottom of the screen gradually deteriorating
 as the character took damage from the various creatures around him as
 well as his comical inability to reorient himself on to the path. Finally,
 mercifully, he succumbed and the player’s view dropped to the floor. And
 that was the end of my first sight of Doom.

 My dad decided not to select this game as one to transfer across to our
 computer, thinking it far too violent for us - but a couple of years later we
 got hold of Doom 2 when a friend came round with its stack of five black
 disks. By now we had inherited the 486 as my dad had obtained a shiny
 new Pentium - at this point the fan was emitting a constant groaning noise
 and there was something disconnected in the power button that meant it
 wouldn’t start up in cold weather and you had to blow a hair-dryer at it to
 get it running sometimes, but broadly speaking it still worked. And we
 played through Doom 2 mostly with IDDQD on and skipping around levels
 with whatever cheats we could find.

 I had always loved making my own levels for games that allowed it, so
 learning of the existence of Doom editors was tremendously exciting - yet
 another CD yielded Geoff Allan’s DoomEd 4.2 2 . In those days, though,
 being able to create working sectors was a bit hit or miss and you had to
 have a pretty good ability to perform calculations in 3D space in your
 head to work out what your map was going to look like, so I was only able
 to produce semi-functional abominations. And by this point, id’s latest new

 2 https://doomwiki.org/wiki/DoomEd_4.2
 3

 amazing shareware game Quake had come out - so as we jerked through
 that as quickly as the wheezing and panting 486 could manage, we sort
 of forgot about Doom.

 Send Lawyers to Hell
 Like most things in my life, I became the operator of a Doom Youtube
 channel mostly by accident. After rediscovering the Doom editing
 community going stronger than ever in 2016, I had joined a couple of
 community projects, put together my own GZDoom episode Vulkan Inc
 where I threw in every bit of custom content that interested me, and was
 recording occasional videos by request to help mappers see how a new
 player navigated their maps and took on the challenges in them.

 Things really kicked off when the company I work for was outed in the
 media for furnishing prison camps on the southern border of the US. My
 team and I had assumed that the unexpectedly large order we were being
 asked to jam through the system was for the hurricane relief efforts that
 were going on at the time, and we had spent a lot of effort making sure
 that it got safely through - so finding out the true destination was a
 thorough kick in the face for all of us. Even though I wasn’t aware of what
 we were doing, I felt very tainted to have had any part in the cruelty of the
 US administration.

 To attempt to make up for it, I turned my Doom videos into a charity drive
 called Send Lawyers to Hell, where I accepted donations in exchange for
 map requests and forwarded money on to RAICES to help get legal
 assistance for people (particularly children) crossing the border from
 Mexico. I was pretty happy with how it went - donations from generous
 Doom community members totalled over $2,000 by the time they dried
 up, and after the charity drive ended I kept going with the videos.

 I was coming to realize that I really enjoyed playing WADs from
 newcomers to the Doom community - not just because they tended to be
 very manageable compared to the gradually inflating difficulty level that
 Doom veterans had ridden for the last few decades, but because of how
 much imagination and variety they had. On top of that, it felt really good to

 4

 let newcomers see their maps being played and to give them a boost in
 visibility. For this reason I had always loved the DUMP trilogy headed by
 TerminusEst13, and I had been disappointed for a while that there had
 never been a fourth one - its attitude was very inclusive, with the aim of
 helping people new to Doom to get over the hurdle of releasing
 something. I had vaguely wanted to try running a community project of my
 own for a while, and wanted to keep this spirit going.

 Eventually, in May 2021 with my daughter Penny safely back in school
 after the worst of the Covid pandemic, I found myself with enough free
 time available to try running a large project myself. After making my
 preparations, I announced it on the Doomworld forums with a name
 satisfyingly metaphorical for helping people up - the Rabbit’s All-comers
 Mapping Project, or RAMP.

 5

 RAMP Central
 GZDoom packages have a couple of great advantages over vanilla-styled
 Doom WADs for community projects with unrelated maps. For one, in the
 original Doom style, the progression of levels is completely locked - you
 can have exactly 30 normal maps, after which the game ends, and 2
 secret levels, the first of which is always accessed from MAP15. The
 second big plus is that you can arrange the project so that maps can be
 connected together in definable ways instead of having to be played
 strictly one after the other. Again taking a cue from DUMP, my plan was to
 make a single hub level from which any submitted maps could be played.

 6

 I had thought about arranging the maps into a game where a player
 would unlock harder levels by completing easier ones, but decided that I
 didn’t want to do anything that would mean that any map was more
 accessible than any of the others - to fully use the hub format’s
 advantages over the linear one, it was important to me that all of the
 maps should be open from the beginning. At this point I didn’t know
 exactly what the game that tied all the levels together was going to be, but
 I went ahead with this basic template in mind hoping that it would emerge
 as I went on.

 Linking to Levels
 I put together a template for a level entrance in Ultimate Doom Builder
 fairly quickly, and I was fortunate that I liked my first attempt enough not
 to ever feel compelled to go back and redo the basic shape or
 components of it at all later. Level entrances consist of a few components,
 which I gave tag numbers according to a scheme that made it possible to
 refer to each of them in a script just by knowing the map number.

 7

 Part Description Tag/parameter

 1 The line that transports the player to the
 map. Calls the script “goToMap” when
 the player crosses it

 (Parameter to script)
 Map number

 2 The sector that represents the teleporter
 pad

 Map number + 1000

 3 The lines that border the level entrance
 alcove

 Map number

 4 The spot where the player should be
 placed on returning to the hub from this
 map

 Map number

 5 The sector surrounding the map
 entrance

 Map number

 8

 6 An “Actor Enters Sector” Thing which
 calls the script “clueDisplay” when the
 player enters

 (Parameter to script)
 Map number

 7 An “Actor Leaves Sector” Thing which
 calls the script “clueClear” when the
 player leaves

 (None)

 8 A yellow dynamic light Map number + 1200

 9 A blue dynamic light Map number + 1400

 A monitor at the back of the alcove showing a screenshot of the level
 completes the arrangement, but this isn’t part of the tagging scheme - I
 just prepared and placed those textures manually.

 With this numbering scheme, I could copy and paste the whole
 arrangement, then use Ultimate Doom Builder’s ability to set tag numbers
 in a selection relatively (by prefixing the tag field with ++) to create new
 map entrances without too much difficulty. I could possibly have reduced
 the number of elements I had to change manually with a bit of scripting,
 but it worked well enough for my purposes.

 The arrow-shaped sector surrounding the map entrance contains two
 sector action Things: one to call a script to display an onscreen message
 when the player enters it, and the other to clear that message when they
 leave. They’re called clueDisplay and clueClear because I copied the
 code from one of my earlier maps called Hell’s Library, where they were
 used to display puzzle clues when you approached a book or a sign on
 the wall and so on. Only the Player Enters Sector thing needed to provide
 the level’s number as a parameter - the Player Leaves Sector thing could
 just clear the message without needing to know its contents.

 The dynamic lights, border walls and teleporter pad floor and ceiling are
 used to indicate whether a map has been completed or not. I chose to
 copy the colour scheme from Zelda: Breath of the Wild because I was
 playing it at the time and found it effective - by changing textures and flats
 and activating certain lights, maps that haven’t been completed have

 9

 eye-catching bright yellow surroundings, and maps the player has visited
 are in a more sedate blue.

 It’s also possible for a map entrance to be assigned a map number that
 doesn’t exist, which causes the map entrance to be visibly turned off - but
 in the finished project I made sure there were exactly as many map
 entrances as there were maps, so this is never seen.

 When the player crosses the line in front of the visible teleporter pad, a
 script called goToMap is called with the map number as a parameter. This
 does a few things:

 ● Sets the global variable “mapNumVisited” to the map number that
 the player is going to

 ● Fades the screen to black
 ● Teleports to the map pointed to by the map number.

 The rest of the actions related to entering a map are performed after the
 player returns to this level once the map they’ve chosen is complete.

 In addition to the Things I placed in the map to represent entrances, I was
 inclined to add several more over the course of the project, which I could
 do dynamically with a similar numbering scheme:

 Part Description Tag/parameter

 10 A map marker (only visible on the
 automap) that displays the level’s
 current status

 Map number + 1600

 11 A floating Thing that also displays the
 level’s current status

 Map number + 1600
 (again)

 12 A Thing to emit circular teleport effects Map number + 1800

 13 A Thing to represent the map’s length Map number + 2000

 14 A Thing to represent the map’s difficulty Map number + 2200

 10

 (It’s worth mentioning in passing that this is not the original numbering
 scheme - I had to hastily alter my first one in mid-June in which I had
 spaced things in increments of 100 instead of 200, not expecting that the
 project would reach anywhere near one hundred maps.)

 To hub or not to hub
 In a slightly confusing detail, the hub map is not actually a hub, as far as
 GZDoom is concerned. It’s possible to set up maps in GZDoom in what
 are called clusters, which follow a true “hub” format like in the Hexen
 games - the player can freely move back and forth between levels in a
 cluster, and their state is saved between visits. The DUMP collections
 (and my own only previous hub-based GZDoom project, Keeper 3) used
 this layout, taking advantage of the way that the main map’s state would
 be saved between visits but physically preventing the player from
 re-entering levels by blocking off the level entrances once they had been
 visited.

 I decided to do things differently here - I wanted the player to be able to
 play maps as many times as they wanted, in anticipation that I would
 reward them by completing a level in certain ways such as clearing it of
 monsters. This meant that I couldn’t set the maps up in a cluster, because
 I needed the levels to reset on each visit. I would therefore have to
 restore the state of the hub map manually when the player entered it,
 instead of being able to rely on GZDoom to remember its state for me.

 As big a deal as it sounds, this didn’t really feel like a huge undertaking.
 GZDoom provides 64 global variables, which can be arrays - and usefully,
 they even act a bit more like associative arrays than non-global ACS
 arrays do, with no need to specify a fixed length. I used three at first, with
 some more joining the lineup over time: an int called mapNumVisited as
 mentioned above, then an array called levelsDone and another variable
 called monstersRemaining.

 There is an ENTER script on the hub level called comeFromMap that
 handles restoring the hub’s state:

 11

 ● If the player has just come back from a map, alter the global
 levelsDone array as appropriate to indicate the level has been
 visited, then award them some bonuses based on the difficulty
 and length of the level and whether they exited with no monsters
 remaining (a global exit script counts this and puts it in the
 monstersRemaining global just before a player leaves a level)

 ● Loop through the possible map numbers to decide how each level
 entrance should be displayed:

 ○ If a map doesn’t exist with this number, disable the
 entrance’s lights and set its textures/flats to look
 deactivated (using the numbering scheme above to find
 the relevant lines and objects - if we want to affect the
 entrance of map 24, we want to alter the floor/ceiling of the
 sector tagged 1024, deactivate the dynamic lights with tags
 1224 and 1424, etc)

 ○ If this map number’s entry in the levelsDone array is
 greater than 0, the player has completed this map once -
 remove the yellow light, change its textures to blue and
 spawn a blue map marker and teleporter effect

 ■ If the levelsDone entry is 1, the player has
 completed the level - display a blue token in the
 teleport area

 ■ If it’s 2, they’ve also exited the map with no
 monsters remaining - display a star instead

 ○ If the entry in levelsDone is still 0, then the map hasn’t
 been visited yet. Remove the blue light, leave the textures
 as the default yellow, spawn a yellow map marker and
 teleport effect, and spawn some hovering items that show
 the difficulty and length of the map.

 ● Update the progress bar visible on the screen to reflect the
 number of levels completed and mastered (“mastered” being the
 term I chose to mean “completed the level with 0 monsters
 remaining”).

 Like most things in this project, this script grew in complexity a bit as I
 added more elements to the game, but this was more or less where the

 12

 hub was as the project began. Now I needed a way to put some levels
 into it.

 13

 RAMPART - The uploader/compiler

 Setting up
 Bill Gates is often quoted as saying “I choose a lazy person to do a hard
 job, because a lazy person will find an easy way to do it.” And by that
 measure I’m an incredibly lazy programmer - I try not to do anything
 myself if I can possibly get a computer to do the work for me. This means
 I’ll probably be the first to be eaten when the machines finally rise up
 against us.

 Before I started putting together a project of my own, I knew that I wanted
 to have some sort of framework in place for compiling it all together
 without me having to be directly involved in that process. A few years ago
 I’d seen DUMP 3 drive TerminusEst13 half insane with its vast quantity of
 maps and assets submitted (and I suspect this is a large part of the
 reason there was never a DUMP 4). In fact, every forum thread where
 someone had to keep track of any project with multiple contributors
 looked like a dreadful tangle, with the project leader hunting for people’s
 submissions, hastily-made adjustments and new versions, finding if they’d
 updated a link deep in a topic thread or deleted it and posted a new one,
 and on top of that, having the Sisyphean task of putting together endless
 snapshot versions and asking everyone to check that all the changes had
 been incorporated since the last one.

 While I’m online a frankly unhealthy percentage of my life, I knew I didn’t
 want to go it alone with the task of keeping up with people’s submissions,
 and that I would require some automated support. I had considered just
 using Git, but that would involve the giant leap of getting people to install
 and learn how to use it. As useful as it is as a collaborative tool, Git is
 absolutely terrible for non-programmers - and let’s be honest, despite
 having used it for about a decade now I’m only absolutely certain about
 three commands: “pull”, “push”, and “delete everything and start again”.

 And so I started on the system I would eventually christen RAMPART, a
 rather tortured acronym for RAMP Aggregator for Rapid Tessellation. The

 14

 idea was like continuous integration for Doom WADs - I was going to
 accept submissions via a site instead of having to keep track of them
 through forum threads and emails, and would write something that would
 zip them up in a PK3 file on demand, bundling them with my own material
 that supported the game built around the maps.

 As usual, things turned out a little more complicated than I expected.
 Then they grew from there and became a lot more complicated instead.

 The first steps
 Despite all the frameworks and tools that exist in 2021, I still like to write
 websites in pretty much bare PHP. It was what I learned to make dynamic
 sites on a couple of decades ago, and while it has its insanities as laid out
 by Doom aficionado Eevee in their well-known Fractal of Bad Design
 article 3 I still can’t hammer out the basics faster in anything else. A menu
 bar, some CSS, some pages and backend scripts - who needs more than
 that?

 Allowing people to upload things was no problem, but I made a few false
 starts before deciding exactly how I would implement the method for
 people to get the files back down again. I had first thought of involving a
 cronjob or even something like Jenkins to sweep an uploads folder

 3 https://eev.ee/blog/2012/04/09/php-a-fractal-of-bad-design/
 15

 periodically and incorporate them into the project, but eventually decided
 to keep things as simple as I could and not involve any dependencies. I
 even went with using a file-based “database” system instead of
 headaching through PHP’s infamously awful SQL communications. The
 workflow went like this:

 1. When someone uploads a WAD, check for the next available map
 number.

 2. Store the uploaded WAD in an uploads folder under the name
 MAPXX.WAD.

 3. Enter the provided map name and author, together with the
 assigned map number, into a JSON-encoded catalogue file which
 acts as a super-lightweight database.

 4. When a download of the project is requested, create a ZIP with
 the contents of my “fixed content” folder plus the contents of the
 upload folder, incorporate a MAPINFO script to define all the
 levels that had been uploaded, and serve it as
 RAMP-SNAPSHOT.pk3.

 Because I knew creating a ZIP wouldn’t be an instant process, I made the
 download script check if the catalogue file had been updated since the
 last PK3 generation, and had it just serve that same PK3 back again if it
 hadn’t - therefore saving a lot of waiting around for downloads if a
 snapshot had already been generated with the files that were currently in
 the uploads folder.

 I was also aware that people were almost certain to want to update their
 maps after submission, and I didn’t want them to have to go through the
 trouble of setting up some sort of account to do it. So when someone
 16

 uploaded a map for the first time, the response message would include a
 PIN that they could write down (or, in real-world use, ask me to retrieve it
 for them because they’d forgotten). This could later be entered into the
 upload form to call up the details they had entered before and provide an
 updated WAD or amended information for the map.

 At first, I provided a field for people to enter their own PIN during a map’s
 first upload. I chose the term “PIN” over “password” to discourage people
 from reusing a bank password or anything that was meant to actually be
 secure - while I know about hashing and salting and the various other
 ways to cook a password, I didn’t want the remotest chance of a mistake
 by me accidentally handing out people’s secure information. Eventually I
 decided not to accept user input at all for this, and just to hand out PINs to
 the contributors from a predetermined list to make it clear this wasn’t
 meant to be a secure system.

 GZDoom and WADs
 According to Tom Hall, the Doom data file format got its name when,
 having decided to use the word “lump” for a piece of game data, John
 Carmack swivelled his chair around to him and asked “Hey, what’s a word
 for a lump full of lumps?”. “A wad?” was the unsure answer, and so WAD
 files were born, later backronymed to “Where’s All the Data?”. These
 WADs are like lists of files - each lump has a name of up to eight letters
 and some associated data. Unlike files, the order of lumps in a WAD
 matters, and they’re interpreted based on where they are in the list.

 A Doom-format map, for example, isn’t a single entry but is made up of
 eleven lumps. The first is a lump with no data behind it called a “marker”,
 which has a name matching the internal name of the level slot (such as
 E1M1 or MAP01). This is followed by ten further lumps that describe
 various aspects of the map such as the locations of vertices and objects.

 17

 In addition to WADs, GZDoom supports the newer PK3 format for Doom
 mods. A PK3 is really just a ZIP file with a sheet over it - it’s much easier
 to work with quickly than vanilla WADs are, as files are interpreted based
 on where they are in a folder structure instead of whether they’re between
 a certain set of markers or not. Textures and flats go into textures/ and
 flats/ folders and will be interpreted even without converting them to
 Doom’s specific image formats. The maps/ folder is the only place where
 WADs come into the equation - for each WAD file in this folder, GZDoom
 will include the map described by the WAD, using its filename (and not
 the name of the map marker within the WAD) as the internal name for the
 map.

 So, knowing about this arrangement, I could create compiled PK3
 projects very easily without even manipulating the uploaded WADs -
 when a download was requested, I could copy the files from my fixed
 18

 content folder into a temporary work folder, copy the uploaded WADs into
 a maps/ folder within that using the filenames to arrange them into their
 level slots, then ZIP the whole thing to produce a PK3 that was ready to
 run in GZDoom. I implemented this, threw in some WADs I happened to
 have lying around, and I was immensely pleased that it worked instantly.

 Except... for some reason it didn’t work for every level. About half the
 WADs that I had included just refused to be recognized, with GZDoom
 giving a “No map MAP13” error when I tried to jump to them. Eventually,
 by scouring through the WADs in SLADE, I saw the pattern - the levels
 that worked were in WADs that either just contained the map lumps and
 nothing else, or that happened to have placed their music and other
 assets after the map data in the list of lumps. Maps in WADs that had any
 data before the initial map marker were just being discarded. It looked like
 I was going to have to explore the WAD format more deeply after all.

 Exploring Lumps
 I hadn’t looked much at the internals of WADs before starting RAMP, but
 the file format is well documented around the community including
 Doomwiki 4 - so even though I hadn’t done a lot of work with files on the
 byte level before, they turned out fairly easy to parse. A WAD file is
 divided into three sections:

 1. A header that describes what the WAD is and how many lumps
 are going to be in it

 a. 4 bytes for a signature - this is either the string IWAD or
 PWAD, to identify that this either an internal or patch WAD

 b. 4 bytes for the number of lumps in the WAD.
 c. 4 bytes for the byte number where the directory starts - i.e.

 the first byte after the main section

 4 https://doomwiki.org/wiki/WAD
 19

 2. The lump data: appropriately, this is a large wad of continuous
 data with no separation between data for the individual lumps

 3. The directory, which describes how to parse the lumps back out of
 the WAD. For each lump, it stores 16 bytes:

 a. 4 bytes for the location in the lump data where this
 particular lump’s data starts

 b. 4 bytes for the size of the data for this lump
 c. 8 bytes for the name of the lump (8 characters long,

 padded with null bytes if the actual name is shorter than 8
 characters)

 So, in what was retrospectively a sign that the project was beginning to
 snowball, I added a WAD handler to the equation. Now, instead of being
 copied directly into the project during the PK3 compilation step, each
 uploaded WAD file would be run through this code. The handler would
 interpret each file, go through the lumps and discard anything that wasn’t
 part of a map, then save the filtered WAD into the project ready for
 compiling into the ZIP. The original files would remain intact in the uploads
 folder, so they could be reprocessed at any time without having to ask the
 contributor to re-upload their file.

 I ran my random test subject files through the new process, and the PK3
 was produced with the doctored WAD files. Now, even the maps that
 originally had extra data that interfered with the reading of the map were
 recognized and ran without problems. Everything was working.

 20

 Allowing Limited Customization
 It was now a bit restrictive, though. GZDoom takes the already fairly
 customizable Doom and amplifies it massively with a ton of ways to
 extend and fiddle with it, and my upload process only allowed map data
 through. During the phase where I’d experimented by uploading a load of
 WADs I happened to have lying around, I had hoped that GZDoom would
 be able to recognize and include music and graphics lumps inside the
 map WADs as well, but as it turned out, it was only able to read the map
 data in them.

 This wasn’t a huge issue, though, because now I had a way of opening a
 WAD up and poking around the insides, it would be simple to give the
 PK3 updater the ability to recognize a couple more kinds of lumps. So I
 added two extra cases:

 1. Assume the first MIDI file in the WAD is the map’s music (later this
 was expanded to allow MP3, OGG and even SNES SPC files,
 which I wasn’t previously aware GZDoom could play). When it’s
 encountered, copy its data out into the PK3 music folder under the
 name MUSXX where XX is the map number

 2. On finding a graphic called RSKY1, use this as the map’s sky
 texture - similar to the above, copy it into the PK3 textures folder
 with the name MSKYXX.

 After getting the WADs together, the PK3 updater would then write a
 MAPINFO file (GZDoom’s way of describing game and map properties)
 which pointed to the appropriate music and sky for each map if those files

 21

 had been parsed out of the uploaded WAD, and the default Doom 2
 RSKY1 and D_RUNNIN sky and music if they hadn’t.

 I decided that at this point that this was about all that the uploader needed
 - it would work for most people’s cases and I could work with people to
 include the occasional thing that would need manual intervention. As this
 project was primarily aimed at people who were taking their first steps into
 DOOM modding, I expected that not many people would want to include
 custom content.

 Extending RAMPART
 Everyone wanted to include custom content. I should really have
 anticipated this, because when I got into GZDoom in 2016 and discovered
 its vast potential for adding and adjusting things, I went absolutely mad
 throwing in everything that interested me and replaced about half the
 game by the time Vulkan Inc was finished. In addition to the custom
 content, people were a bit more adept at using MAPINFO than I had
 thought, and the instructions on the upload page that I thought had been
 straightforward actually went against people’s expectations on how they
 should submit their maps.

 Custom metadata
 One of the most obvious things I’d forgotten to include was an option to
 allow jumping and crouching in a map. It wasn’t possible to just set this at
 a project level, because many people would design their levels in a way
 that required jumping to progress, while many others would assume the
 player wasn’t allowed to jump, enabling massive skips if jumping were to
 be enabled.

 22

 So I went back and added a toggle for jumping and crouching to the
 upload form - now, the catalog file included a flag for whether jumping
 would be allowed on the map, and the compile step would recognize that
 flag and put the appropriate flags into the MAPINFO for that map. While I
 was at it, I added a second flag so that people could indicate that their
 map was a work in progress - ready for people to try out and give
 feedback, but perhaps not fully completable. Unlike the jump property, this
 one had no actual effect on the MAPINFO - it was just an indicator for the
 site.

 As more maps were submitted, though, there were people who included
 MAPINFO lumps in their own WAD, which my compiler would ignore as I
 hadn’t told it to do anything with them. The NoJump and AllowJump flags
 weren’t a problem, because there was already a toggle for that in the
 upload form - but there were all sorts of things that I hadn’t considered
 would be incredibly important for maps, such as flagging that killing a
 Cyberdemon or Spider Mastermind should do something in the level, or
 that the level should behave like Dead Simple with its two hardcoded
 tags.

 This meant adding another component to the compiling step, a MAPINFO
 handler. On finding a MAPINFO lump in an uploaded WAD, the WAD
 handler would call this and it would use the very crude parser I’d written to
 loop through its contents and pay attention to some of the properties
 depending on an allowlist. Then, when it reached the step for writing the

 23

 MAPINFO for the map into the completed project, it would include the
 properties that it had derived from the submitted MAPINFO along with its
 own details.

 Catering to everyone
 Skies and music presented further problems. I think complete beginners
 appreciated my special cases for how to include them in their maps, but
 people familiar with MAPINFO skipped straight past reading any of the
 instructions. Because why would they have needed them? They already
 knew how to include music and sky graphics and how to tie them into the
 map. I had now inadvertently set up a challenge for myself in allowing
 both methods to work.

 The problem, as in many things with computers, was in correctly working
 out what the submitter intended to happen, no matter what combination of
 things they uploaded. If they had a lump called RSKY1, they had probably
 followed the instructions on the upload page and wanted that as the sky. If
 there was a MAPINFO with a sky1 property that pointed to a different
 lump name, then they probably wanted the lump they’d uploaded by that
 name to be the sky. But it was also possible for them to want to use a
 lump in the base project or Doom 2 resources as the sky - so the third
 possibility is that they would provide a sky1 property that pointed to a
 lump name that didn’t exist in the uploaded WAD. In these cases, I just
 had the compiler assume that a lump by that name would somehow exist
 in the project when it was run.

 24

 Despite all of this automation I was building, new unexpected cases kept
 on coming - maps which needed more than one music included because
 they switched in the middle, or two skies which were used in different
 places. These felt specialist enough to just deal with manually by
 uploading the resources people wanted to use myself.

 In addition to all of that, throughout the project I made sure that new
 textures, sprites and sound effects had to be manually copied to the PK3
 fixed content folder instead of included automatically. This was a
 deliberate decision so that I could review them before inclusion, as I felt
 these were the easiest way for people to include inappropriate content in
 the project. It also meant that I could keep track of anything that was
 attempting to override a default lump - there was an incident midway
 through the project where all red hell pillars sprouted into giant trees
 because of someone’s choice of sprite names.

 Raising limits
 The sheer pace of submissions was beyond anything I’d expected, with
 an entire megawad’s worth of maps being submitted within a week of me
 opening the site in what was intended to be a slow ramping-up period.
 And in addition to continuously providing new ways to upload things, as
 the project grew it ran into limits that I hadn’t expected it to hit. I had to
 raise the PHP file upload and POST data limits (upload_max_filesize and

 25

 post_max_size in php.ini) from the initially adequate-seeming 2MB
 several times, eventually hitting 15MB because it’s possible for files in
 UDMF format to hit very large figures just from having a lot of vertex and
 line data.

 Another mystery arose early on when the project rolled over from MAP19
 to MAP20, and the map wasn’t getting added to the project when it was
 regenerated and updated. I had assumed that there was something
 subtle wrong in my code that caused maps above 20 to break, but the
 real situation was one of those bugs where you really need to put on your
 detective hat with the silly ear flaps:

 ● On requesting a download, the project would start the
 handle_pk3_update script, recognize that it needed to rebuild the
 project and start work on it.

 ● During this script’s running time (usually during the phase when it
 had prepared everything and was making a ZIP of the compiled
 project), it would run over the PHP script timeout and terminate.

 ● Because of how PHP handles writing ZIPs by creating a
 randomly-named temporary target file before copying it to the real
 one, this meant the temporary file was left behind when the script
 terminated and the compiled project from the last successful run
 remained unchanged.

 ● Therefore, people were getting the “Generating a PK3…”
 message and eventually getting a download, but the download
 was the last one that was made before MAP20 was added, and
 not the one that had just apparently been generated.

 This was circumvented fairly easily by looking at PHP’s vast array of
 levers and pulleys again and finding how to specify a custom timeout
 value for a script - I set it to ten minutes to be safe, but the real amount of
 time to compile the final project was more like five minutes in the end.
 This issue also needed some more investigation early on because it turns
 out that PHP’s handling of ZIP files is unusually slow - what I ended up
 doing was not touching the ZIP process in PHP at all, but having it just
 prepare the files to be included in a folder then call a Python script to
 perform the actual zipping process (then I realized there wasn’t much
 point to the Python script either and just had it call Unix’s own command

 26

 line zip utility instead). For reasons not entirely clear to me, this is much
 faster than having PHP write the ZIP itself.

 In a similar vein, the download page briefly stopped working when the
 size of the compiled PK3 drifted over 64MB - the naive way that I had
 sent the file to the client’s browser (loading the entire file then sending
 that) caused PHP to run out of memory, and I had to quickly learn the
 proper way of doing it by using the readfile function (which, in the best of
 PHP traditions, is not used to read a file but instead writes the contents of
 a file to the output buffer).

 Once the project got ridiculously large, I also found out that GZDoom
 doesn’t automatically assign LevelNum properties to maps with lump
 names above MAP99 (it only does so for lump names in the format
 MAPXX, and maps over 100 would be MAPXXX instead). LevelNums are
 needed to tell the game where to teleport the player when you use the
 “teleport to new level” linedef action, so the hub teleporters stopped
 working for maps which were assigned slots above MAP99. This was a
 simple fix to make the MAPINFO writer just add the property according to
 the map slot number, but it was yet another example of having to spend
 some energy on a problem that arose because of the unexpected size of
 the project!

 Downloading RAMPART

 After RAMP ended, I extended RAMPART a little to handle a greater
 variety of types of Doom projects, and it’s free for anyone to use - all
 that’s needed is a web server with PHP. The source code is available at
 https://github.com/davidxn/rampart .

 27

https://github.com/davidxn/rampart

 Rapidly Annihilating My Predictions
 At the beginning of the project I had made sixteen map slots available, a
 number which had turned out to be comically inadequate very quickly.
 Therefore a lot of my role throughout the project was in bolting on new
 rooms in the hub map to accommodate new transporters.

 The DUMP projects had gone with fairly organized, regular and
 symmetrical hub maps, but RAMP’s was meant to be more chaotic from
 the start, looking like one of Doom’s own vague techbases with all sorts of
 components and environments. As a result, after twenty or so maps had
 been submitted it began to get very hard to navigate to the map you
 intended to play. As the hub expanded I tried to give each area its own
 sort of identity, colour scheme and landmark to aid navigation, but it didn’t
 really solve the problem of not being able to track down where a particular
 map was if you didn’t know.

 Some sort of a guide was needed, and the problem kept getting more
 evident as new maps continued to flood in. Somebody in the project’s
 Discord server generously provided an annotated version of the map like
 you get in shopping centres, with the maps listed alphabetically and tied
 to their map numbers. It was very useful to have, but wouldn’t fit very well
 in the game without a lot of thinking about how to display and interact with
 it.

 What I needed was a simple interface - a way for the player to see a
 sorted list of all the maps so that they could find the one they were
 searching for, then to somehow indicate to them where the selected map
 was. I vaguely knew that GZDoom supported the Strife dialogue system,
 which was a way of setting up a branching tree of conversations, and this
 seemed to be a promising way to let the player flip through a menu
 without having to code the entire system myself.

 The Guide
 I don’t think it’s unfair to call the dialogue system a bit awkward. Like
 many things in the GZDoom world, it comes in multiple generations - first
 28

 there was the binary format that was made up for the original Strife game,
 then it was refined into a more malleable text-based format called
 Universal Strife Dialogue Format or USDF 5 , and then built upon further by
 GZDoom with its own extensions and termed ZSDF 6 . And even though
 ZSDF includes some of the familiar GZDoom concepts like interacting
 with inventory items and so on, what you can do with it is much more
 limited than what you might expect if you’re coming from ACS.

 Here’s what I was able to work out:
 ● DIALOGUE lumps are tied to maps, and are not global to the

 WAD (which didn’t matter, because I only needed this to run in
 one level).

 ● Conversations are assigned to Thing types (or actor classes, in
 GZDoom-speak).

 ● When a conversation is initiated, the player has to talk to a Thing.
 It doesn’t matter how the conversation is started - even if it’s
 through a script that’s run by a linedef, the action performed is
 “start a conversation between the player and this tagged Thing”.
 The conversation that’s started is the one assigned to that Thing’s
 type.

 ● Conversations consist of a list of Pages, which the player can
 navigate between according to the Choices that are made
 available on each page. To some extent, you can include
 conditions that decide whether a Choice is visible or not.

 ● A Choice can optionally perform an action special (such as action
 special 80 to run a script) when selected. If no next page is
 specified, it will also end the conversation.

 6 https://zdoom.org/wiki/ZDoom_Strife_Dialog_Format
 5 https://zdoom.org/wiki/Universal_Strife_Dialog_Format

 29

 So the framework was just about visible now - I had to generate a list of
 Choices that represented each map, which would call a script with the
 map number as a parameter when selected. From there, I could hand
 control over to ACS and do what I needed to do to guide the player to
 their selected map.

 However, as I mentioned, the Dialogue format is limited, particularly if
 you’re accustomed to GZDoom’s niceties. The biggest letdown was that
 there was no automatic paging - if I threw a list of all 60 or so maps at the
 time into a dialogue page, it would just give up on displaying the choices
 (I found 10 to be the practical limit per page before things started getting
 strange). In addition, you can’t specify any sort of page identifiers - they’re
 assigned numerical IDs depending on their position in the file, and unlike
 everything else, are indexed from 1. So I would have to keep track of a
 changing list of maps across multiple pages, and because new maps
 might be inserted anywhere in the alphabetical list, it would never be
 certain which page number a map would appear on. Naturally, I didn’t
 want to have to update the list of maps manually every time someone
 submitted a new one, either. So this would require - what else? - another
 script which would output the dialogue script for me!

 The guide-writing script started life as one of the admin tools on the
 RAMP site that ran every time I felt the guide needed updating, but before
 too long I’d made it part of the compilation process. Its purpose is to
 produce a dialogue script readable by GZDoom that can be added to the
 hub map data while preparing the complete download.
 30

 The script reads the project catalogue file to get a list of all current map
 numbers and their names, sorts the list according to the map name
 (ignoring case) and then organizes them into a list of groups of a
 configurable size. These groups would become the list of Choices on
 each page.

 Then it’s just a matter of writing out the script:
 ● Write the conversation information (just the name of the actor

 class that will run this conversation)
 ● For each page:

 ○ Write the name and dialogue to display, and the text of the
 option which will end the conversation (each page of the
 conversation has this added automatically, you can’t have
 a page where the player is forced to make a choice and
 not quit the conversation). In our case these are all the
 same no matter the page, but they still have to be repeated
 on each one.

 ○ Write a “Previous page” choice that leads to the page
 before this one (or just a “Top of list” choice that leads back
 to here if this is the first page)

 ○ For each map in this page group:
 ■ If the name of the map is too long for display here,

 truncate it
 31

 ■ Write a choice with the text of the map, which will
 cause a script to be run with the map number as an
 argument when selected

 ○ Write a “Next page” choice that leads to the page after this
 one (or if this is the last page, just “End of list” which leads
 back here)

 ○ Add 1 to our current page number and loop until all our
 map groups have been handled.

 Initially, I made the map choices move the dialogue to a final page
 announcing that a marker had been added to the map, but in the end I
 found this got in the way a bit and opted just to get the script that started
 the conversation to log a message to the screen after a map choice was
 made instead.

 This is the start of the conversation script followed by the first page. The
 TOP OF LIST choice just leads back to this same page 1 - on subsequent
 pages this is replaced with an option that allows the player to return to the
 previous page, and the TOP choice exists here so that the position of the
 first map on the page remains consistently at position 2 throughout all
 pages. The choices with the map names perform action 80 which means
 “call a script”, and have parameters that tell them to call script 1 on the
 current map with an argument matching the map number for the
 requested map. The “next page” choice, comfortingly obviously, advances
 to the page after this one (if this is the last page, the guide writer replaces
 this with an “END OF LIST” choice instead).

 conversation {
 actor = "RAMPO";
 page { // page 1

 name = "RAMPO";
 dialog = "Hello! I'm RAMPO (which stands for RAMP Assistant for

 Map Pointing-Out). Which map can I help you navigate to today?";
 goodbye = "Close (ESC)";
 choice { text = "-- TOP OF LIST --"; nextpage = 1; }
 choice { text = " 12 Gauge Catharsis"; special = 80; arg0 = 1;

 arg1 = 0; arg2 = 106; }
 choice { text = " A Baleful Heart"; special = 80; arg0 = 1; arg1

 = 0; arg2 = 88; }
 choice { text = " Abandoned"; special = 80; arg0 = 1; arg1 = 0;

 32

 arg2 = 66; }
 choice { text = " Ad Viridis Andron"; special = 80; arg0 = 1;

 arg1 = 0; arg2 = 89; }
 choice { text = " Airborne"; special = 80; arg0 = 1; arg1 = 0;

 arg2 = 93; }
 choice { text = " Ambition's Cost"; special = 80; arg0 = 1; arg1

 = 0; arg2 = 135; }
 choice { text = " And They All Fall Down"; special = 80; arg0 =

 1; arg1 = 0; arg2 = 59; }
 choice { text = " Arterial Space"; special = 80; arg0 = 1; arg1 =

 0; arg2 = 90; }
 choice { text = ">> NEXT >>"; nextpage = 2; }

 When I decided to make this an automatic part of the compilation
 process, a bit more trickery was needed. Previously, the hub map had
 been part of the fixed content folder which was just copied entirely into the
 PK3 folder without changes, but messing with its data would require an
 extra step. Therefore the hub WAD wasn’t really “fixed content” any more,
 but I chose to cheat just a little and keep it as part of the copying process
 then mess with the copied file before finalizing the zip. It felt better than
 having an entire separate workflow for handling the WAD for the hub.

 So another step was added to the compilation process. After performing
 the copy of fixed content, the code would open up the copied hub WAD
 and copy all the lumps into a new WAD file. After encountering the
 BEHAVIOR lump (which represents the compiled script code), it would
 insert the generated DIALOGUE, then save the doctored WAD over the
 original one. Later on I added further dialogue to the hub, and so this
 became appending the text of the generated dialogue on to the existing
 one, rather than inserting a completely new lump.

 After absolutely ruining the WAD a couple of times because I forgot to
 update the reported size of the lump when I altered it and sent the
 pointers to all the lumps in the WAD directory off into neverland, my
 meddling worked very well. I created an out of bounds Thing to hold the
 conversation, constructed a little computer terminal with my ZZT player
 avatar from my Stumbling video series to give it some character, and
 wrote an ACS script to create a marker on the map depending on the map
 number that had come into it (in another mildly annoying DIALOGUE

 33

 limitation, you can’t specify a script name - it has to be numbered instead,
 but this wasn’t a huge deal).

 Displaying progress
 There was one last detail that nagged at me, though - finding the location
 of a specific map in the hub if you knew its name was something that
 contributors and testers for the project would be interested in, but if you
 were a player exploring the hub, you would probably be using this to look
 for an interesting-sounding level that you hadn’t yet visited. To make it
 useful for that, there needed to be some indication of whether a level had
 been finished previously, or completely cleared of monsters.

 Here, I ran into the fairly major obstacle that the DIALOGUE system can’t
 change the text or appearance of choices at all at runtime - what you put
 in the script is exactly what you get. However, it does have a couple of
 ways to attach conditions to whether choices should appear - a limited
 system that can look at the player’s inventory and hide options if they’re
 carrying (or not carrying) specified objects.

 The player’s inventory in ZDoom can be a bit of a strange place if you’re
 not used to its way of thinking. In the original Doom-engine games that
 have an inventory, such as Heretic, it’s a place where you can select and
 34

 use special items that you’ve picked up. The concepts of carried
 weapons, ammunition and keys are separate - only special usable items
 go into this inventory. ZDoom combines all of these ideas together,
 representing everything that’s attached to the player as some kind of
 Inventory item - this could mean things in what you’d traditionally think of
 as a selectable inventory, items that the player is “holding” in the context
 of the game like their keys and weapons, or even abstract things that are
 more like properties that are attached to the player.

 This is the player’s inventory on starting Heretic within ZDoom - the player
 has four weapons (two each to represent the Tome of Power-enhanced
 and normal varieties of the wand and staff), their ammunition, and an
 object that’s used internally to represent what kind of armour the player is
 wearing. HexenArmor is obviously only used by default in Hexen, where
 armour value is represented by some brain-melting algorithm that
 involves four different armour items 7 - but the ZDoom player is always
 carrying it because it’s needed to represent some variables.

 The point of explaining all this is that the player can be given “inventory”
 items that just represent values or flags that you want to associate with
 the player. I call these “StatInventory” items, and they’re a habit that sort
 of infected me during my exploration and documentation of Brutal Doom a
 few years before this 8 - in the course of this project I realized there was a

 8 https://forum.zdoom.org/viewtopic.php?t=62203 BDLite
 7 https://zdoom.org/wiki/Classes:HexenArmor

 35

https://forum.zdoom.org/viewtopic.php?t=62203
https://zdoom.org/wiki/Classes:HexenArmor

 better way to handle variables on the player, but the idea is to define a
 generic inventory item with a high maximum that does nothing except sit
 in the inventory, and then specific ones that extend it without modifying
 anything.

 Actor StatInventory : Inventory
 {

 inventory.maxamount 999999
 inventory.interhubamount 999999

 }

 // There’s got to be a better way to do this, but here we go anyway
 Actor RampLevelComplete10 : StatInventory {}
 Actor RampLevelComplete11 : StatInventory {}
 Actor RampLevelComplete12 : StatInventory {}
 Actor RampLevelComplete13 : StatInventory {}
 Actor RampLevelComplete14 : StatInventory {}
 ...
 Actor RampLevelMastered10 : StatInventory {}
 Actor RampLevelMastered11 : StatInventory {}
 Actor RampLevelMastered12 : StatInventory {}
 Actor RampLevelMastered13 : StatInventory {}
 Actor RampLevelMastered14 : StatInventory {}
 ...

 No doubt you can already see that this approach is rather inelegant -
 there’s no such thing as an array in the player’s inventory, so you have to
 create a huge list of numbered classes to sort of simulate elements in an
 array instead. There were two hundred of each of these in the project’s
 DECORATE file, significantly bloating its size (but not affecting the game
 performance - just defining classes has little effect on this).

 The point of these two big lists of classes was to have a representation of
 the levels that the player had visited within their inventory. In the script
 that was run when the hub map started when it had to loop through each
 level number to decide how to display the portals, I added a new action -
 if the player had visited and completed a map, give them the
 RampLevelComplete StatInventory item with the number matching that
 map number. If the player had also cleared out the monsters, give them
 the RampLevelMastered item as well.
 36

 And now that the player’s inventory was set up, I could alter the way the
 conversation script was written. For each map, I needed three separate
 choices:

 ● Choice 1, the map name alone. Visible if the player does not have
 the RampLevelCompleteXXX item appropriate to this level in their
 inventory.

 ● Choice 2, the map name prepended with an X (to represent it
 being crossed off the list). Visible if the player has a
 RampLevelCompleteXXX item but does not have the
 corresponding RampLevelMasteredXXX.

 ● Choice 3, the map name prepended with a * (which appears as a
 diamond in Doom’s default small font). Visible if the player has a
 RampLevelMasteredXXX item.

 Setting up three choices and all these conditions per level would usually
 be a very dull task - and as you can imagine, it made the script very large
 - but with the guide writer, it became very easy to write a loop and make
 this part of the process. Therefore, this is what the start of page 1 of the
 conversation script looked like, with the three different options for a single
 level - only one of which will be displayed depending on the player having
 the RampLevelCompleteXXX or RampLevelMasteredXXX items in their
 inventory.

 conversation {
 actor = "RAMPO";
 page { // page 1

 name = "RAMPO";
 dialog = "Hello! I'm RAMPO (which stands for RAMP Assistant for

 Map Pointing-Out). Which map can I help you navigate to today?";
 goodbye = "Close (ESC)";
 choice { text = "-- TOP OF LIST --"; nextpage = 1; }
 choice { text = " 12 Gauge Catharsis"; special = 80; arg0 = 1;

 arg1 = 0; arg2 = 106; exclude { Item = "RampLevelComplete106"; Amount
 = 1; } }

 choice { text = "X 12 Gauge Catharsis"; special = 80; arg0 = 1;
 arg1 = 0; arg2 = 106; require { Item = "RampLevelComplete106"; Amount
 = 1; } exclude { Item = "RampLevelMastered106"; Amount = 1; } }

 37

 choice { text = "* 12 Gauge Catharsis"; special = 80; arg0 = 1;
 arg1 = 0; arg2 = 106; require { Item = "RampLevelMastered106"; Amount
 = 1; } }

 At least, that’s what it looked like until I wrote all of that description of how
 I did it above during the time when RAMP was in public testing. In this
 concluding paragraph I was going to say how absolutely overwhelming it
 looked to do this in ZScript just so that I could justify to myself that this
 solution, while clumsy, was actually a clever workaround for the limitations
 of ACS and DECORATE. Then I noticed that ZSDF allowed the possibility
 of using a custom ZScript class to lay out the data in the dialogue tree,
 and when I looked at the code of the ConversationMenu class that is
 used by default, I could just about understand what it was doing and how
 to adjust it.

 So now I was in the awkward situation of having realized how I might
 make a more satisfying, less workaroundish version of the guide - while
 definitely not straightforward, it was at least within the realms of human
 possibility. So on a whim, I went off on my first proper exploration of
 ZScript.

 Displaying progress, but this time using ZScript
 DECORATE and ACS are languages with all sorts of madness in them -
 one of my favourite details about ACS is that all of its variable types are
 smoke and mirrors, and everything is an integer underneath. A decimal
 number? It’s an integer with the top 16 bytes representing the whole
 numbers and the bottom 16 representing how many 65536ths in the
 decimal part. A boolean? It’s just an integer, you can assign the number 7
 to it if you like. Surely a string can’t be an int? But it is - when you create a
 string, ACS actually bundles the contents of the string away in a strings
 table, and gives back an integer that points to that entry in the table -
 every function that accepts a string really accepts an integer and silently
 looks up the entry in the table to get the real contents of the string. It’s a
 mess that’s had bits attached to it with elastic bands and toothpaste, and I
 am absolutely fascinated by it.

 38

 But what makes the ZDoom scripting languages so nice to work with is
 the extensive wiki and the history of questions and answers that have
 built up on the forum - if you don’t know how to do something, asking
 Google will very likely land you on one of these places or the other with
 details of functions, parameters and examples. ZScript, being relatively
 new, just can’t compete with this - there are guides to converting a
 DECORATE class to ZScript, but it’s hard to grasp exactly what the
 further possibilities are, and the details on the wiki seem to assume that
 you already know about the internals of the ZDoom engine and the best
 place to extend its functionality to achieve what you want.

 However, looking at the ConversationMenu class 9 , I felt I had a fairly
 self-contained testing ground for the first time, as well as a grasp on what
 I wanted to change. My goal was to alter the code of the dialogue options
 so that I could influence how they were displayed, and to work out how to
 transmit level statuses from my existing ACS code into a place that
 ZScript could use.

 Altering the conversation display
 My first experiments were very encouraging - I could specify in the
 conversation script that it should use my own RampGuideMenu to display
 itself, and then (in a concept that will be familiar to DECORATE users as
 well) extended the ConversationMenu class so that I had a place to build
 on.

 The methods in ConversationMenu are rather long and unwieldy,
 performing many actions each which makes them hard to demonstrate
 with (and awkward to extend because you have to copy and paste the
 whole thing) - however, just one call in DrawReplies is responsible for
 how the text of a choice is displayed:

 screen.DrawText(
 displayFont,
 Font.CR_GREEN ,
 sx / fontScale,
 sy / fontScale,
 mResponseLines[i] ,

 9 In https://github.com/coelckers/gzdoom
 39

 DTA_KeepRatio,
 True,
 DTA_VirtualWidth,
 displayWidth,
 DTA_VirtualHeight,
 displayHeight

);

 There are a ton of parameters here, but I’ve bolded the ones we care
 about - the colour to display the message in, and the actual text of the
 message. By copying and altering the DrawReplies method in which this
 happens, I was soon able to colour each choice according to which
 character it began with, matching the colours I’d selected for the new and
 visited transporters in the hub.

 string nonMapChars = "<->";
 string textToDisplay = mResponseLines[i];
 string startChar = textToDisplay.Left(1);
 int isMap = (nonMapChars.IndexOf(startChar) != -1);
 int optionColour = Font.CR_GREY;
 if (isMap) {

 if (startChar == " ") {
 optionColour = Font.CR_GOLD;

 }
 else if (startChar == "X") {

 optionColour = Font.CR_LIGHTBLUE;
 }
 else if (startChar == "*") {

 optionColour = Font.CR_WHITE;
 }
 textToDisplay = textToDisplay.Mid(2);

 }

 screen.DrawText(
 displayFont,
 optionColour ,
 sx / fontScale,
 sy / fontScale,
 textToDisplay ,
 DTA_KeepRatio,
 True,
 DTA_VirtualWidth,
 displayWidth,
 DTA_VirtualHeight,
 displayHeight

);

 40

 All of this logic is made of pretty standard stuff that you’d find in
 something like C#, and it isn’t exclusive forbidden ZScript knowledge.
 However, I was flummoxed for a while because the line
 "<->".IndexOf(startChar) (used for seeing if the start char matched one of
 the characters that would indicate it’s a menu option) wouldn’t work for
 some sort of deep engine reasons - fortunately, the helpful ZDoom
 Discord members were on hand to advise me to instantiate, assign and
 then use the string on separate lines.

 This code adds an extra bit of decision-making before just displaying the
 text of the choice. It sets the default option colour to grey and then looks
 at the first character of the text to see if it’s one of “<”, “-” or “>” (the “<<
 PREVIOUS <<”, “-- TOP/BOTTOM OF LIST --” and “>> NEXT >>”
 options. If it isn’t, then it must be a map - so it looks at the first character
 of the text again and changes the colour to display depending on which of
 the three states the character represents the map is in. Having done that,
 it takes off the first two characters of the text, because now that we have
 the colour scheme we don’t need the text to display with the prepended
 character any more. Finally, the DrawText call is made with the
 optionColour and textToDisplay that we’ve worked out from this process.

 This was good, but it still wasn’t quite in the spirit of ZScript because all
 I’d done was implement an alternative way to display text depending on
 its first character, with my three-reply backend still holding the system up.
 What I really needed was a way to read the state of each level from here -
 the data that was currently stored in the levelsDone global array in ACS.

 A global ZScript data store
 ZScript requires you to think in a different way from ACS or DECORATE.
 It’s more similar to non-ZDoom coding than either of those older
 languages are, but paradoxically I had got so used to the way that the
 odd ZDoom-exclusive languages think that it was difficult to re-learn the
 concepts of object oriented code and apply it to a ZDoom environment.

 In DECORATE, you’re working within an object called an Actor, and you
 set up a path for it to go from state to state. In ACS, you’re writing out lists
 of things to do and setting up when to trigger them. ZScript does both of

 41

 these things - you create a class, define the things that it can do, then tell
 it to do things. Unlike DECORATE actors, ZScript classes don’t
 necessarily have a physical presence in the level, making them
 immediately more abstract to think about compared to Doom’s
 comfortingly physical way of doing things.

 EventHandlers and Thinkers are two of the classes that ZScript allows
 access to, and both of them sit in the background and wait for things to
 happen. An EventHandler is similar to a script declaration in ACS - it can
 be set up so that it gets notified when certain events occur in the game
 such as a level being entered or the player dying, but its strength over
 ACS is that it can also get down to much smaller things like detecting
 when a line or actor is damaged, and being able to identify much more
 about the nature of the event - which line ID? How was it damaged, who
 damaged it, and by how much? And a Thinker is something that performs
 tasks - each dynamic light has a thinker behind it that controls its effects
 and position, and the game creates a thinker whenever a sector needs to
 move so it can control modifying the heights of the floor or ceiling.

 And so, to make something to store data, I needed to make a new kind of
 Thinker. It would just have to exist in the background, hold a list of map
 numbers and their appropriate statuses - 0 for unvisited, 1 for completed
 and 2 for cleared of monsters - and allow the RampGuideMenu to retrieve
 things from this list as needed. (The list couldn’t exist on the
 RampGuideMenu itself, because that object is only created when Doom’s
 conversation system needs it - I needed something that was always
 present.)

 class RampDataLibrary : Thinker
 {

 //Level status index corresponds to map number
 int levelStatuses[200];

 //Quick, make this a STAT_STATIC thinker when we initialize
 RampDataLibrary Init(void)
 {

 ChangeStatNum(STAT_STATIC);
 return self;

 }
 }

 42

 This is the outline of a basic Thinker that doesn’t do anything yet. It
 provides an array for level statuses with 200 elements, and an
 initialization method. (If you’re familiar with object-oriented code, it’s
 important to point out that this is not a constructor as I had assumed - it’s
 just a method that happens to be called Init, which you have to call
 manually when you instantiate the class.) This Init method only changes
 the StatNum of the thinker, which determines the kind of thinker that it is -
 a STAT_STATIC thinker persists across levels, making it able to act like
 the global data store that I needed.

 Getting data from ACS to ZScript
 With a place to store data in the ZScript environment, the next step was to
 find a way to put data into it. If I had been doing this from scratch without
 my existing ACS base, the way to do this would have been to set up an
 EventHandler that reacted to the hub map being loaded (the equivalent of
 the ENTER script) and to create and populate the object from there - but
 as I already had most of my logic in ACS, I could take a shortcut.

 To communicate between ACS and ZScript, ZDoom provides the
 ScriptCall function. This allows you to pass parameters to any static
 function in a ZDoom class, just as if you were calling another ACS script -
 a static function is a function that’s written as part of a class but that you
 call directly without the class being instantiated.

 Three static functions were enough to read and write the levelStatuses
 array - two to call directly from ACS and one more to act as support:

 static void WriteStatus(Actor activator, int position, int status)
 {

 RampDataLibrary.GetOrCreateInstance().levelStatuses[position] = status;
 }

 static int ReadStatus(int position)
 {

 return RampDataLibrary.GetOrCreateInstance().levelStatuses[position];
 }

 43

 static RampDataLibrary GetOrCreateInstance(void)
 {

 ThinkerIterator it= ThinkerIterator.Create("RampDataLibrary", STAT_STATIC);
 let p = RampDataLibrary(it.Next());
 if (p) return p;
 return new("RampDataLibrary").Init();

 }

 The read and write functions first call GetOrCreateInstance. As its name
 suggests, this creates a RampDataLibrary if it doesn’t exist in the list of
 the game’s thinkers already (note the explicit call to the Init method here,
 which will set it up as a static thinker). Whether it had to create a new one
 or just get the existing one, it then passes the RampDataLibrary back to
 the function that called it. This kind of pattern is called a singleton, and is
 commonly used when you need exactly one instance of a class to exist
 within an environment - every call to these methods should retrieve the
 same RampDataLibrary.

 From there, the ReadStatus and WriteStatus functions can read from or
 write to the levelStatuses array on the RampDataLibrary object - and by
 using ScriptCall in my ACS to pass data from the ACS levelsDone array
 to ZScript each time the hub was started, I had a source of level statuses
 that would be reachable when the RampGuideMenu was called up.

 script "debug_levelsdone" (void) {
 for (int i = 10; i < 199; i++) {

 log(d:i, s:": ", d:ScriptCall("RampDataLibrary", "ReadStatus", i));
 }

 }

 Reading the level status data
 I had only paid attention to the DrawReplies method of the conversation
 menu class before, in which the things that are passed to the function for
 it to display are just strings stored in an array called mResponseLines. To
 do some processing on the choices before they were lined up for display,
 I had to look at the FormatReplies function which is called before
 DrawReplies.

 44

 FormatReplies is responsible for:
 ● Deciding whether or not each choice should be displayed (based

 on the conditions regarding the player’s inventory laid out in the
 DIALOGUE script)

 ● Deciding whether to display the cost of a dialogue choice (for
 things like Strife’s shops, where you need a certain amount of gold
 to buy things)

 ● Splitting choices with long dialogue into multiple lines for display
 ● Adding the default “goodbye” text (or the one specified by the

 script) to the end of the choices to exit the conversation
 ● Calculating the Y position on the screen at which to start writing

 dialogue, based on the number of total lines.

 To make this more specific to my needs, I added a replyMapStatuses
 array to the class in which I could keep track of how to display each line,
 so that the DrawReplies function could refer to that in parallel with the
 mResponseLines array (ideally I would have made DrawReplies accept a
 list of objects instead of just strings so I could include this data on each
 line, but I didn’t want to overcomplicate things in a language I was
 unfamiliar with). FormatReplies then became:

 ● For each specified choice, first assume it isn’t a map (write 3 to
 this line’s replyMapStatuses entry).

 ● If the choice’s second argument is above 0, it represents a map,
 because those choices are all set up to call script number 1 with
 the map number. Refer to the RampDataLibrary’s levelStatuses
 array to decide whether the map status is 0 (not visited), 1
 (completed), 2 (cleared out), then put that in replyMapStatuses.

 ● Don’t split lines, truncate map names when they’re too long
 instead

 ● Don’t add any goodbye text

 With this logic in place, DrawReplies could be made a lot simpler again -
 the working out of whether the level has been completed or mastered has
 already been done, so all DrawReplies needs to do is check the
 corresponding entry in replyMapStatuses every time a line is drawn and
 display it in the appropriate colour.

 45

 int textColours[4] = {Font.CR_GOLD, Font.CR_LIGHTBLUE, Font.CR_WHITE,
 Font.CR_GRAY};
 screen.DrawText(

 displayFont,
 textColours[replyMapStatuses[i]] ,
 sx / fontScale,
 sy / fontScale,
 mResponseLines[i] ,
 DTA_KeepRatio,
 True,
 DTA_VirtualWidth,
 displayWidth,
 DTA_VirtualHeight,
 displayHeight

);

 Scope

 And that would have been it… except scope was the last thing that
 confounded me. ZScript has a set of rules around what can be called by
 what else, and from what I can understand these rules exist in order to
 make sure that multiplayer games and demo playbacks stay in sync. In
 my case, Thinkers are designated as in the “play” scope (meaning they
 run during gameplay) and the conversation menu exists in the “ui” scope
 (it’s part of the user interface, or menus). And one of the rules is that
 UI-scoped classes can’t even think about creating any object in the play
 scope - therefore, if you attempt to run the RampDataLibrary’s
 GetOrCreateInstance method from the RampGuideMenu, you’ll get the
 following error message:

 Can't call play function GetOrCreateInstance from ui context

 46

 I was unsure how to get around this obstacle for a while because this
 concept wasn’t something I had ever had to deal with in my coding life,
 but eventually hit on the idea of providing an alternative method for the
 RampGuideMenu to call to retrieve the library:

 static clearscope RampDataLibrary GetInstance(void)
 {

 ThinkerIterator it = ThinkerIterator.Create("RampDataLibrary",
 STAT_STATIC);

 let p = RampDataLibrary(it.Next());
 if (p) return p;
 return NULL;

 }

 The “clearscope” keyword in the method signature, as far as I can tell
 from the documentation, designates this method as being allowed to be
 called from either the UI or menu scopes as long as it only reads. If the
 GetOrCreateInstance method hadn’t been called already then the guide
 menu would just get a NULL back - but this doesn’t matter, because the
 guide menu is never called before we’ve had the chance to set the
 instance up.

 And with that last detail, everything worked - on entering the hub level, the
 RampDataLibrary would be instantiated and filled, and the guide
 conversation menu was able to read the level statuses from the library
 and display lines as appropriate. Later on, I would realize that having got
 this far it made no sense to keep taking up an ACS global variable, and
 would move all the interaction with the list of level statuses to my
 read/write CallScript calls to ZScript.

 At this point, having achieved my first success with ZDoom’s new (several
 years old by now) scripting language, I wondered about redoing the rest
 of the hub’s code with ZScript as well. Then, realizing that I’d spent two
 days on something that was pleasing to develop but almost undetectable
 by the player, I opted to just be satisfied with this amount of ZScripting
 instead - so you’ll be getting a description of the DECORATE and ACS
 flavour of the hub’s garden minigame once you get to that chapter.

 47

 Map descriptions
 One of the other things I realized I would need as the project grew was a
 quick way to get across the content of a level from the hub - not just by
 showing a screenshot but with a brief visual summary of what it was like
 to play. Each transporter in the hub level shows an icon depicting the
 theme of the level along with some numbers giving a rating out of five for
 length and difficulty (these scores combined determine how many points
 a player gets for completing the level).

 This data is provided to the game through what I would humbly call a truly
 world-class abuse of a GZDoom feature. I put this together before my
 ZScript adventure above, and in the world of ACS and DECORATE
 there’s no such thing as a lump that you can just treat as a store of
 arbitrary data… but the LANGUAGE lump acts a bit like one.

 As you would guess from the name, the GZDoom LANGUAGE lumps are
 intended to aid internationalization - instead of storing strings that will be
 visible to the player directly in your code, you store them in a file that has
 variations of them for different languages. You then refer to those strings
 by keywords - for example, instead of a locked door displaying the locked
 yellow door message directly, it looks up the keyword PD_YELLOWK and
 displays whatever value it points to. If you’re playing in English, this is the

 48

 familiar “You need a yellow key to open this door” message from the
 original DOS version, but if you have the language set to Italian, it’ll look
 up the same keyword in the Italian language lump and will display “Ti
 serve una chiave gialla per aprire questa porta”. If no specific language
 has a keyword for a string it will fall back to the default language (the
 language spoken in america that approximates English).

 So if you set up some keywords in only american English and define that
 as the default, they’ll be the same no matter what language GZDoom is
 being played in and can be treated as a store of key-value pairs.

 [enu default]
 MAP10LENGTH = "XX"; MAP10DIFFICULTY = "XXX"; MAP10THEME = "City";
 MAP11LENGTH = "X"; MAP11DIFFICULTY = "XXX"; MAP11THEME = "Temple";
 MAP12LENGTH = "XXXXX"; MAP12DIFFICULTY = "XXXX"; MAP12THEME = "Tech";
 MAP13LENGTH = "X"; MAP13DIFFICULTY = "XX"; MAP13THEME = "Tech";

 In a usual LANGUAGE lump each key and value would be on a separate
 line, but happily I found out it also allows you to arrange them like this
 which makes it a bit neater for my purposes. This file was generated from
 a Google Sheet 10 that I kept during the project to record my testing notes
 and other bits of data that I would need, and I just copy and pasted it into
 the fixed content folder every so often (it would have been possible to
 generate it by hooking into the Google Sheet API at build time but I didn’t
 want to spend the time to get it set up).

 Having got that LANGUAGE lump into the PK3, it was possible to use it
 together with ACS’s rather unorthodox method of nailing strings together
 and wrangle the arrangement into behaving a bit like an associative array.
 This code is called in a loop when the hub is loaded, to set up the
 appearance of the level portals:

 int mapspeciallength = StrLen(StrParam(l:StrParam(s:"MAP",
 d:levelnumber, s:"LENGTH")));
 int mapspecialdifficulty = StrLen(StrParam(l:StrParam(s:"MAP",
 d:levelnumber, s:"DIFFICULTY")));

 10 https://docs.google.com/spreadsheets/d/1MoLDlWT2txqAdFv00vawNeXk663W-YyrDiP7eZdjli0
 49

 int lengthTid = levelnumber + OFFSET_PORTAL_LENGTH;
 SpawnSpotForced(StrParam(s:"RampLengthHover", d:mapspeciallength),
 levelnumber + OFFSET_YELLOW_PORTAL_LIGHT, lengthTid, 0);
 SetActorPosition(lengthTid, GetActorX(lengthTid) + 24.0,
 GetActorY(lengthTid) + 24.0, GetActorZ(lengthTid), false);

 int skillTid = levelnumber + OFFSET_PORTAL_SKILL;
 SpawnSpotForced(StrParam(s:"RampSkillHover", d:mapspecialdifficulty),
 levelnumber + OFFSET_YELLOW_PORTAL_LIGHT, skillTid, 0);
 SetActorPosition(skillTid, GetActorX(skillTid) - 24.0,
 GetActorY(skillTid) - 24.0, GetActorZ(skillTid), false);

 If there was ever a piece of ACS code that cries out for explanation it’s
 this one, so let’s step through it starting with the nest of parentheses that
 form the expression on the top line:

 StrLen(StrParam(l:StrParam(s:"MAP", d:levelnumber, s:"LENGTH")));

 Working from the inside out, the first function called is the rightmost
 occurrence of StrParam - an enigmatically-named function that allows you
 to concatenate strings, numbers and various other things together into a
 single string. The character on the left of the colon describes how to
 interpret each term - s stands for string, and d probably stands for decimal
 (I’m not certain, but personally that’s how I remember that d = a number).
 What StrParam is doing here is taking the literal string “MAP”, the level
 number it’s examining, and then the string “LENGTH” - therefore, if we’re
 looking at map 10, the result would be MAP10LENGTH.

 This now looks a lot like the key that was set up in the LANGUAGE lump!
 So we pass the result of that into another StrParam function, this time
 with the prefix l. This tells StrParam not to interpret this as a literal string,
 but to go off and search for a language key with this name. It finds it, and
 the value of MAP10LENGTH is “XX”, so this is the result of that StrParam
 call.

 Why “XX” and not the number 2? Well, this is another duct-taped
 workaround to this method - StrParam allows you to convert numbers to

 50

 strings, but once you have a string in ACS it’s very difficult to change it
 back into a number. Ways to do it exist, but there’s another way that isn’t
 immediately obvious to get a number out of a string - to just look at its
 length.

 Therefore, the strings in the LANGUAGE lump aren’t actual numbers -
 they’re strings of letter Xs, with the number of Xs representing the number
 we want. The last thing done on the line is a StrLen call on our result, and
 in this example this means we finally end up with the number 2 as the
 length rating for the map. (For display purposes, getting the string “2”
 back would have been OK because we don’t use it as a number, but
 further down the file it has to be a number so that it can be used in points
 calculations.)

 With that done, the same hideous procedure happens for the difficulty,
 then the objects that show the numbers are spawned (again, using
 StrParam with a string and number to construct the whole class name - in
 map 10’s case it has length 2 and difficulty 3, so we want
 RampLengthHover2 and RampSkillHover3). They’re offset by 24 map
 units on the X and Y coordinates so that no matter which cardinal
 direction the mouth of the portal happens to be facing, both digits will be
 visible to a player from the outside.

 I have the feeling that I should conclude this section by apologizing to
 anyone who’s ever contributed code to GZDoom - now that I explain this I
 can see how nonsensical and impractical it is, especially now that I’ve
 graduated to exploring ZScript. I can promise you that the details behind
 the next part of RAMP’s implementation are far less mad, even if the
 concept isn’t.

 51

 Ultraviolent Gardening

 I am as surprised as anybody else that RAMP contains a garden-building
 minigame. In truth, when I started the project I hadn’t really thought about
 the game that would grow around the individual maps - when I imagined
 the project being sixteen maps long it didn’t seem to need one. My
 inspiration DUMP had made the player choose and complete a certain
 number of maps from the selection before unlocking a boss level, but I
 wanted to do something a little different and attempt to encourage people
 to play all of the vast collection.

 The most effective way that I’m aware of to keep a player engaged is to
 offer them the promise of continuous reward. It’s something that the
 Civilization games are particularly good at (and it’s what keeps me playing
 the dozens of Etrian Odyssey games as well) - you’re always just one turn
 away from something exciting happening, like gaining access to a new
 technology, or finishing a Wonder, or finally capturing the last of
 Montezuma’s cities. With the format I’d chosen, I couldn’t let the rewards
 have an effect on the gameplay like this, but I could at least appeal to the
 player’s sense of aesthetics.

 In Doom Eternal, the Tony Stark-style battlestar-castle-command centre
 changes gradually throughout the game - blank spaces are filled with vinyl
 52

 records, action figures and other assorted memorabilia that the
 Doomslayer collects throughout the levels. In this spirit, I thought of
 setting up a trophy garden that the player could visit that would gradually
 change and populate throughout the game.

 In snapshots of RAMP from about halfway through the project, an outdoor
 area appeared in the south of the hub map with five plinths. On top of
 these, I made various dolls from EndHack’s collection on Realm667
 appear depending on how many levels the player had completed. It
 worked as a proof of concept, but it definitely wasn’t very exciting - and
 with other parts of the hub always demanding my attention with the
 increasing number of maps submitted, I didn’t know how to make the
 arrangement more attention-grabbing. And therefore, something
 possessed me to code an editor that would let the player lay out their
 rewards themselves.

 Garden layout

 The garden area is a 20 by 10 grid of 128-unit squares comprising three
 concentric sectors and a MapSpot. The MapSpots are numbered starting
 from tag 8000, with the tag number increasing by 10 towards the east and
 by 200 towards the south - an awkward numbering scheme, but I knew I
 could abstract it away with a function so I didn’t need to worry about it
 while coding. The outer sector for each square is tagged the same as the

 53

 MapSpot, with the two inner sectors’ tags being 1 above and 2 above this
 number.

 The idea was that the player would be able to customize each of these
 squares to give it a floor style like a path or water, and for the middle two
 sectors to form a plinth if the player happened to place a trophy on the
 square - although very quickly I realized it would be better to treat plinths
 and trophies as separate ideas so that I could do more with plinths
 besides put trophies on them. The data behind the garden is kept in three
 more global arrays - gardenObjects for the things on the squares,
 gardenPlinths for how the middle two sectors should appear to form a
 plinth, and gardenTerrain for the ground type (of all three sectors per
 square if the square is blank, or just the outer one if a plinth is present).

 Like everything in this project, the concept evolved a bit as I implemented
 it, but mercifully I did everything I wanted on my first try on the physical
 layout of the garden tiles and they stayed the same throughout.

 54

 Editing the garden

 Writing an editor in ACS sounds like a ridiculous task, and to be fair, it is -
 but the concepts are the same as scripting anything else. It’s possible to
 take the player out of their own first-person view by using Camera
 objects, which are often used to sweep across the landscape in titlemaps,
 or in levels to let the player see what’s going on in another part of the map
 - and after that, everything else is just about moving objects around and
 manipulating sectors and things, the same as any other script.

 The player gets access to the garden minigame through the computer
 terminal they encounter when they visit the south side of the map - just
 like the guide system, it activates a conversation with a tree of options
 that result in a script being called with certain parameters when the player
 eventually selects an item to place. This particular script is called
 gardenBuild (except because we can’t call a named script from a
 conversation, we call script number 2 which just forwards its parameters
 directly on to gardenBuild).

 This script accepts two parameters, both of which are integers (not that it
 has much choice in ACS): a mode, and a tiletype. The mode lets the
 script know if we’re placing a floor, a Thing decoration, a plinth/box or a

 55

 trophy. The tiletype denotes the specific thing that we want to place. The
 objects and tile types available for the player to use are stored in an
 unwieldy ACS database consisting of multiple long arrays to describe the
 names of the items, the textures and heights that should be associated
 with them, and so on - I had another Google spreadsheet to keep track of
 these and to write them out into a neat list of lines that I could just copy
 and paste into the map’s script.

 After looking up the name of the thing the player wants to place for the
 sake of the display at the top of the screen, the code will make sure that
 the objects that represent the arrow cursor and the four corners of the
 highlighted tile are created and set them back to where the player left
 them the last time the editor was opened. It will then freeze the actual
 player in place and enter an infinite loop where it’s checking for inputs for
 the garden controls.

 Setting up the editor
 ACS provides the function GetPlayerInput with two options to interpret the
 general input from the player - it can be called with INPUT_BUTTONS,
 which will return a bitmask representing the buttons that the player
 currently has held down, and INPUT_OLDBUTTONS, which represents
 the buttons that the player had held down on the previous frame. By

 56

 comparing the two, it’s possible - if rather long-winded - to detect whether
 a player has just hit an input (a keydown), is currently holding an input, or
 has just released an input (a keyup).

 if (buttons & BT_FORWARD && !(oldButtons & BT_FORWARD)) {
 if (gardenCursorTile < 8200) continue;
 targetTile = gardenCursorTile - 200;
 SetActorPosition(

 GARDEN_TID_CURSOR,
 GetActorX(GARDEN_TID_CURSOR),
 GetActorY(GARDEN_TID_CURSOR) + 128.0,
 GetSectorFloorZ(targetTile+2, 0, 0) + 64.0,
 False

);
 gardenCursorTile = targetTile;

 }

 For the case of the player moving forward (towards the north), the code
 checks if the player was not holding the Forward input on the previous
 frame but is now. If the tag of the current location of the cursor (kept track
 of in gardenCursorTile) is below 8200, then it must be on the top line
 already, so it ignores the input. Otherwise, it will use the SetActorPosition
 function to move the cursor 128 units to the north, and 64 units above the
 floor level of the centre sector of the tile it’s moving to (the central
 square’s tag is 2 greater than the tag of the square’s corresponding
 MapSpot). After this piece of code, the objects representing the corners of
 the target tile get updated in a similar way.

 Editing a tile
 So moving about is taken care of - now we need to be able to manipulate
 the square when the player presses Attack or Jump to place our selected
 object. The exact actions depend on the mode that we’re in, but the aim is
 to pass the required sector number, along with the ground type, plinth
 type and object it should be given to a function called
 gardenSetTileBySector.

 Except we run into a bit of a problem here, because one of ACS’s little
 oddities is that it doesn’t allow more than three parameters to be passed

 57

 to a function. Sometimes I’ve got around this by storing extra
 “parameters” in top-level variables instead just before the function is
 called, and having the accepting function read them:

 However, on this occasion, I chose to use a small amount of bitwise
 arithmetic because I was never going to need a value more than 127 on
 any of the parameters. Therefore, the parameters became the sector
 number, a variable composed of [the plinth number bitshifted to the left by
 8] plus [the thing number], and then the ground type number on its own.

 After setting the appropriate values in the gardenObjects, Terrain and
 Plinth global arrays, the gardenSetTileBySector function now calls
 gardenRedrawTile with the number of this tile. (I came up with the idea of
 “tile numbers” to make referring to them easier, but I was really
 inconsistent about whether functions accepted the sector number to work
 58

 on, or the tile number - the designated tile numbers ascend in 1s from left
 to right, top to bottom, so the tile number of a sector is the sector tag
 minus 8000 then divided by 10.)

 The gardenRedrawTile function will set the tile’s three sectors back to
 height 0, remove the Thing tagged with [this sector’s number + 1], which
 is the decorative Thing currently spawned in that sector. Then it will
 interpret how to set up the tile for display from the three global arrays:

 ● Set all three sector floors to the required ground texture.
 ● Handle the Thing that should be placed in this sector:

 ○ If the number we were given for the object is below 20, this
 is a junk piece that appears as part of the litter in the
 garden at the start of the game - spawn the Thing type
 associated with this ID at the sector’s MapSpot, then give it
 a random offset from the centre.

 ○ If the object number is between 50 and 100, this is a trophy
 - construct the appropriate class name by appending the
 ID to the string “RampTrophy” and then spawn it at the
 MapSpot.

 ○ If between 100 and 128, this is a decorative class that isn’t
 a trophy - look up the class that should be spawned
 according to this ID and spawn it with no offset.

 ● Handle the plinth for this sector - if plinth number is above 0, then
 look up the appropriate heights and textures for the inner two
 sectors from our set of arrays, then change the floors and line
 textures as appropriate.

 There was one hangup that I had while writing this section - it turns out
 that sectors don’t really take kindly to being told to change their heights
 twice in the same tick. So instead of directly using a floor movement
 action to tell the full tile to reset to 0 and then for the sectors to go to their
 appropriate height again (and then again if those sectors were part of a
 plinth), I kept an array of target heights for each sector and then had yet
 another function, gardenSetFloor, set all the floors appropriately at the
 end. Even this had its annoyances, because even though there seem to
 be half a million different functions to move a floor in GZDoom, just being
 able to instantly set a floor to a specified height is not one of them - so I

 59

 used the best approximation that happened to work, working out the
 amount that the floor had to move from its current position and then using
 Generic_Floor to do it.

 Loading and saving
 Because the hub level is not a true hub, I had to do the same thing here
 that I did with the level teleporter statuses, and restore the state of the
 garden manually when the player was finished with a level. But this turned
 out to be the most straightforward thing in the entire project, because I
 already had a function to redraw a tile by using the data from a set of
 global arrays - all that the game needed to do was loop through the 200
 possible tiles when the hub was entered, and call gardenRedrawTile on
 each of them.

 Additionally, when the game is started, the garden is full of random
 rubbish - this is done by looking to see if the player has no previously set
 map number that they came back from, and then picking random terrains
 and objects from a limited selection.

 Unlocking rewards
 The player doesn’t have access to all the garden items from the start of
 the game. For trophies, this is an obvious requirement, as they’re
 awarded for certain milestones, but the size of RAMP was so enormous
 that only including those wouldn’t have resulted in the sense of
 continuous reward that I was going for. Therefore, I needed to start the
 player out with only some basics, and to allow new decorations and
 terrains to be placed as the game progressed.

 The data for this, at least, is very simple. There are three arrays in the
 ACS database that hold the number of points the player needs to have
 collected to use each plinth, decoration or terrain:

 int GARDEN_PLINTH_POINTS[13] = {0, 0, 118, 169, 728, 795, 558, 965,
 897, 84, 660, 423, 1066};

 60

 int GARDEN_DECORATION_POINTS[12] = {0, 321, 592, 186, 457, 389, 152,
 626, 33, 101, 931, 491};
 int GARDEN_FLOOR_POINTS[16] = {0, 0, 50, 135, 220, 355, 694, 1033,
 999, 863, 67, 762, 829, 524, 287, 16};

 To act on this data, I added yet another section to the increasingly bloated
 comeFromMap function called at the start of the hub level. For each of the
 reward types, it will look to see if the player’s score exceeds each item’s
 requirement, and if it does, it will give the player an inventory item that
 flags them being allowed to use that item - it will also print a message to
 the screen if that new item hasn’t already been announced (kept track of
 in yet another global array). The same idea is used for opening the
 garden at all - a minimum score of 10 is hard-coded in, and the game will
 direct the player to the garden the first time they come back to the hub
 with a score exceeding this value.

 The awarded inventory items then come into play when the player is in
 the conversation with the garden computer - the options are made visible
 depending on which inventory items are present. Due to the limited
 number of options available on a conversation page I had to subdivide
 each of the three categories into two finer ones, with ground types being
 separated into terrains/walkways, plinths being boxes/planters and things
 being decorations/greenery - but eventually I fit them all.

 It would have been possible to do what I did for the guide computer here
 as well, make a custom conversation class that just looked at the player’s
 score directly and avoided any use of the inventory items at all - but I’d
 reached project fatigue a long time ago by this point and the use of
 inventory items for flags like this was nowhere near as flagrant an abuse
 of the system as the triple-optioned guide menu was.

 page { // page 3
 name = "Terrains";
 dialog = "Choose the terrain you want to place.";
 goodbye = "Close (ESC)";

 choice {text = "<< BACK"; NextPage = 2; }
 choice {text = "Soil";

 61

 require { Item = "RampGardenTerrain0"; }
 special = 80;
 arg0 = 2;
 arg3 = 0;
 }

 choice {text = "Mud";
 require { Item = "RampGardenTerrain1"; }
 special = 80;
 arg0 = 2;
 arg3 = 1;
 }

 choice {text = "Grass";
 require { Item = "RampGardenTerrain2"; }
 special = 80;
 arg0 = 2;
 arg3 = 2;
 }

 Awarding trophies
 The point of all that groundwork was to allow the player to receive and
 place trophies. The code treats these in the same category as the other
 decorative items like pillars and hedges, but the way they’re awarded and
 placed is slightly different from the other objects.

 On entering the hub level, after the unlocking of the regular items has
 been done, the announceNextTrophy function is called. This will further
 call another function findNextTrophyID to find the first trophy that’s
 available for the player to place.

 Trophies come in four different types:

 Type Description Trophies

 1 Given for crossing score thresholds, like the
 decorative items

 9

 2 Given for completing a certain number of levels 12

 3 Given for mastering a certain number of levels 6
 62

 (completing them with zero monsters remaining)

 4 Given for completing certain sets of maps, or
 completing any map on Nightmare difficulty

 9

 Trophy types and their thresholds (the number of points, maps, etc
 needed to unlock them) are also stored in the ACS database. The
 findNextTrophyID function loops through all the trophies, checking to see
 if the threshold of any trophy has been met according to its type. If it finds
 one, it will return its trophy ID number, letting the announceNextTrophy
 function then display its name and details. Multiple trophies are never
 announced at a time - only the first one whose object is not currently
 present in the garden and which meets the requirements.

 Trophies of type 4 don’t have specific thresholds to just check against,
 and these reach into ZScript again - they were intended to require special
 unique circumstances, but the unfortunate reality is there is only one
 special one. The HasDoneTrophyLevels ZScript function simply looks to
 see if all of a selection of levels have been marked as completed or
 mastered, and sends back an acknowledgment if they have - the only
 trophy to do otherwise is the cacodemon-shaped bush, which is awarded
 for completing a level on Nightmare difficulty via a quick hack specifically
 signalling this in comeFromMap.

 63

 The garden editor uses this same function to decide whether to allow the
 player to place a trophy. The “Place Trophies” option is always available
 in the garden conversation, and when it’s selected it will enter the garden
 editor in a fourth mode specifically for placing trophies.

 This fourth mode uses the same findNextTrophyID function as the start of
 the level to find the first trophy available and not currently placed in the
 garden. If it doesn’t find one, it will just quit the editor with an apology - if it
 does, it will place a representation of the trophy on the cursor and will wait
 for the player to place it like a standard decoration.

 The code to place a trophy works slightly differently as well - on putting a
 trophy down, an effect will be spawned at the trophy’s location, there will
 be a slight delay to allow that effect to play, and the editor will then
 immediately return control to the player so that a second trophy of the
 same type can’t be placed. On exiting the garden editor,
 announceNextTrophy is called again. This will show if another trophy is
 available in addition to the one the player just placed - it also makes sure
 that the player gets the chance to recreate trophies if they happen to be
 deleted.

 Despite the amount of work detailed here, I was able to write the majority
 of the garden minigame in a weekend and then just plug in more trophies
 and other rewards as I went on, and I really enjoy that it gives RAMP a
 unique attraction not seen in other vast level collections. I’m not sure
 whether it actually served to keep anyone interested beyond where they
 would have reached with just the maps, but I’ve been pleased to see a
 few screenshots of people’s cultivated gardens online.

 64

 Regret Analysis: Mortem (Post-)
 Not regrets, exactly, but every project has some things that the maker
 looks back on and realizes that they should have done differently in
 hindsight. When a sequel to RAMP comes around (and I will make sure
 there is one!), these are some of the things I’d like to improve or do
 differently.

 The sheer size of it
 I’m fairly sure that as of 2021, RAMP is the largest single-WAD
 community project the Doom community has ever put together. It’s a
 hexawad, if such a word exists, being over six times the size of a
 standard megawad. And I’m not trying to say this in a boasting way - in
 fact, its ridiculous size caused many problems and I’d be very surprised
 (and very congratulatory) if anyone plays it all the way through without
 getting overwhelmed, exhausted or dying of old age.

 The unexpected acceleration of the project meant that the design of the
 hub map RAMP Central is rather inconsistent. I made a basic techbase
 hub before the project started with some fairly detailed, complex rooms
 that housed sixteen level teleporters, and I thought I would be able to
 expand this environment and add a couple more level portals at a time as
 the project grew. However, as we all know by now, the pace just kept on
 getting faster - adapting desperately to keep up, my style of adding a
 couple of them at a time gave way to designing larger rooms that could
 house five or six portals, and eventually to the much larger rooms around
 the edges of the map where I was adding ten or so at a time.

 It’s hard to say how exactly this could have been avoided without making
 the hub map a lot more boring - I could have made more regular and
 predictable rooms with ten or so portals each to keep things more
 organized, but I think it would just feel too stiff and at that point you might
 as well just give the player a menu. As it is, I love the hub’s chaotic
 nature, with a tangle of vaguely technical looking distinct environments to
 explore like a miniature Metroid map. Very near the end of the project I
 added area names that pop up when you move from one to the other like

 65

 Energy Routing or the Central Atrium, which gave them a bit more
 personality and (I would like to think) aided the player’s navigation
 through them. On the other hand, having a random distribution of maps
 makes it hard to keep track of them - some people in the Discord
 chatroom suggested organizing maps by difficulty, or by theme with
 different sections of the hub to match, but in the end I decided that it
 would be more effort than it was worth to rearrange the entire map list.

 The need to design the areas of the hub so rapidly was one issue, but a
 closely related one was the repetitive mechanics of copy and pasting the
 level portal objects to make new ones (and really having to concentrate
 so that I didn’t mismatch the tags of any lines, sectors or things). As listed
 in the chapter about designing the hub, for each new portal created I
 needed to update:

 ● The tags of the blue and yellow dynamic lights above the portal
 pad

 ● The tag of the map spot to place the player on coming out of the
 level

 ● The parameter of the Actor Enters Sector thing that calls the script
 to display the level name and details

 ● The tags of the lines bordering the transporter alcove
 ● The parameter to the goToMap function called by crossing the line

 on to the teleporter pad
 ● The tags of the sectors representing the teleporter pad and the

 alcove around it
 ● The screenshot for the back of the alcove

 It wasn’t quite as overwhelming as this list makes it sound because I
 could select multiple objects at a time and update them in bulk - often
 copy and pasting multiple complete portals and shifting their tags all at
 once to turn portals 52, 53 and 54 into new portals 72, 73 and 74, for
 example. But fewer objects to update and fewer potential things to get
 wrong would have been very welcome. Thinking about it just now, I can
 think of a way to at least get the number of Things to place down to one,
 with a single mapspot that would create the rest of them with the
 appropriate tags at the appropriate places (but can you set parameters on

 66

 created objects? I haven’t yet looked.) Perhaps with some more ZScript
 trickery it could be made even more automatic.

 Easy uploading is a double-edged shotgun
 Without the RAMPART uploader system, it would have been impossible
 to have run this project solo - the number of submissions and updates
 was utterly ridiculous, usually averaging four or five new maps per day but
 with a huge rush of 17 and then 20 maps in the final two days. I can only
 imagine (with a significant amount of dread) the mess that would have
 resulted if I were taking map submissions the traditional way and having
 to sort everyone’s newest versions out.

 However, I think that the presence of the uploader is also the reason that
 the project got as bloated as it did. By being able to upload something
 and then see it included in the project instantly, you’re not dealing with a
 project leader directly and you don’t have to think about the time and
 effort it’s going to take to accommodate your contributions. Some of this is
 on me because I emphasized how easy and automatic the submission
 process was, while deliberately keeping some things as a manual process
 (so that I could review new textures, sprites and so on), vastly
 underestimating the amount of custom content that would be submitted.

 At the beginning of the project, a few people asked me if it was all right for
 them to submit more than one level - and I always replied “You can
 submit as many as you like, within reason” because I didn’t want anyone
 to feel like they couldn’t try more than one idea out. It turns out I should
 have specified what “within reason” actually meant numerically, because
 there are a noticeably lopsided number of maps in the hub per author. In
 the chatroom, some contributors were getting into a strange sort of arms
 race, or a competition that I had never intended for the badge of honour
 of submitting the most maps - never a hostile one, but there was definitely
 an odd and unexpected attitude in a couple of people who seemed to feel
 the need to submit as many maps as was humanly possible.

 Candidly, this struck me as rather self-centred - even though I was
 expanding the hub so nobody would miss out on slots, by submitting

 67

 many maps you’re still taking up a greater percentage of the hub for
 yourself and burying the maps of people who have just submitted one or
 two. As a side effect, it took more of my time away from helping other
 people, with my constant need to concentrate on expanding the hub to
 accommodate more maps. Often these same people would contact me
 asking why I hadn’t made any video updates, on days where I’d had to
 spend all my time making sure their large list of levels were working and
 accessible.

 So while giving people freedom to design and contribute is something
 very important to this project that I don’t regret, I should possibly have
 thought more about how to set people’s boundaries more reasonably and
 protect both other people’s contributions and my own sanity. Next time
 around, I don’t think a three-map limit would be unreasonable. Or perhaps
 the central map could be a hub for episodes instead of individual levels.

 Moderation and filtering
 The A in RAMP stands for “All-comers” and that part of the project is very
 important to me. The project is aimed at everyone, from beginners taking
 their first steps to mappers who have been around a while and want to try
 new ideas. With this in mind, it’s very difficult to justify imposing any sort
 of minimum quality threshold - if a beginner submits something that’s
 totally flat with default STARTAN textures, one BFG and a pile of a
 hundred imps (which would still be better than my own first attempts at
 maps) then they should be welcomed to start there and be coached as to
 how to improve it!

 But some submitted maps tested the completely open nature of the
 project - some people asked if they could submit their previously
 constructed 2,000-monster epics, and I tried to steer them away from that
 by asking them to consider the players of the complete WAD and how
 they’d react to a map that would grind their progress to a halt. I think that
 guidance was mostly successful, but there are definitely still maps in there
 that really slow the pace down.

 68

 The first real challenge to my philosophy was uploaded about halfway
 through the project, a clear joke map with chaotic geometry, gigantic
 untextured walls and a little over six thousand monsters. It was utterly
 unplayable, but the uploader of it insisted that it was exactly as he wanted
 it and wouldn’t listen to anyone who attempted to explain how
 unenjoyable it was. As the leader of the project it was my responsibility to
 decide what was allowed in, but I really wasn’t sure how to reconcile the
 idea of “everyone who’s starting out is welcome to submit” with “I don’t
 like this map so I won’t include it”, and I’ll have to think about this for any
 similar community projects in the future. In this case, it was fortunate in a
 way that the author of this map made some very inappropriate comments
 in the project’s Discord server and was atrociously rude to one of the
 other mappers, so I was handed a much more concrete reason to remove
 him without agonizing over philosophy.

 That brings me to another kind of filtering that falls to a project leader,
 which is moderation of the community that you build. For people like me
 who are anxious about confrontation, this is a difficult role - you need to
 be level-headed and fair, and no matter how well you do it you’ll still have
 to put yourself into positions where not everybody will like you.

 However, you’ve got to remember that as a moderator, your job is to
 moderate - and how you do that has a huge impact on the atmosphere of
 the community you create. There’s another excellent article by Eevee 11

 that talks about setting boundaries in online communities, and how that
 differs from actual written rules - if you try to be too objective, you’ll
 inadvertently encourage troublemakers to find inventive ways to skirt just
 under the line, and you’ll be hesitant to remove anyone because they’re
 not technically breaking the rules of the community. Unfortunately,
 sometimes you have to remove someone who just creates a bad
 environment - and one of the great secrets of moderation (to an anxious
 person like me) is that you have no obligation to justify yourself to them!
 You have to remember that no matter how much obnoxious people like to
 scream and shout about their rights, you have the right (and the
 responsibility) to remove them so that other people can enjoy themselves.

 11 https://eev.ee/blog/2016/07/22/on-a-technicality/
 69

 I hope that this part doesn’t sound too condescending in likening
 members of an internet community to small children, but I think that a
 couple of techniques that I picked up through my daughter Penny’s
 toddlerhood really helped me deal with the people who weren’t creating a
 good atmosphere. The first part is that very young children can’t detect
 things like other people’s emotions or tone of voice - a handicap that the
 Internet recreates even as we do our best to try to get tone across in text.
 If someone is being rude and demanding, you need to outright say it
 instead of quietly tolerating it, because otherwise there’s no feedback on
 their behaviour. In the best case, they might not even have realized that
 they were coming across that way. Some other people might get
 defensive, but even if they do, they will often remember the message and
 adjust their behaviour a little.

 The other technique that I found applicable was in making problems and
 consequences clear. I didn’t want any actions that I took to be a surprise -
 the first time that there was an issue, I would summon my courage and
 speak up, asking to please keep these things off the Discord (whether it
 was people bringing in arguments from elsewhere, or antagonizing
 others, or anything) - in the public chat to make clear that I was
 moderating, and in private with a direct message asking them not to
 continue. I tended to phrase it as “I don’t like doing this, but if that
 happens again I’m going to have to remove you from the server”.

 After someone had been warned, the next time I saw them making others
 uncomfortable I would kick them out with a short note explaining why.
 Then I ignored any further attempts to communicate with me - one of
 them sent me a flood of friend requests to get my attention before I just
 blocked him outright. It’s true what I said above - I really didn’t like doing
 this, I would have preferred to coach them into being pleasant members
 of the community and I really thought I was getting somewhere at one
 point - but sometimes it just isn’t worth it. The general opinion of the rest
 of the community was that I had been too patient with them, so I might
 have been too optimistic as it was.

 70

 Trophies and Awards
 As much as I enjoyed putting the trophy garden together, I don’t think I
 quite gave it the content that it deserved - towards the end of the project I
 was running around making sure that all the maps were completable and
 no new bugs had emerged since I last played them, and I didn’t have a lot
 of time to think about what the player should be rewarded for. I would
 have loved to have specific little achievements in some levels, but that
 would have required me to go into the maps after they were completed,
 fiddling with the author’s intent - nevertheless, having just one special
 circumstance among all the trophies just naturally being awarded if you
 choose to fully complete the game seems a bit plain.

 Relatedly, adding the assumption that all monsters on a level could
 reasonably be defeated was a massive mistake - never change the rules
 of a community project after you’ve already got a significant number of
 submissions. In most levels it was perfectly possible to get 100%
 monsters, but some of them just didn’t have that in their design and
 needed their star awarded automatically so that the player could get a full
 set of 200. Then that opened debate about whether the star should be
 automatic only if clearing the level was categorically impossible, or if it
 was merely impractical, and what the limits to that were (there are no
 weapons on this map but you could technically punch those last two
 Cyberdemons until they explode…)

 So for next time, I think my lesson here is to make sure you know what
 your requirements are at the start of the project and to stick with those,
 not allowing feature creep to set in. But of course, that’s easier said than
 done.

 Deadlines
 My aim with RAMP was to foster an environment where people could feel
 free to be creative without feeling too much pressure. Initially I was vague
 about the deadline, saying I would close for new entries around the start
 of July. Eventually I solidified this to the 6th of July so that the US
 mappers could use the long weekend around that time.

 71

 But there was still some confusion about what that actually meant - in my
 attempt to be relaxed about it, I’d said that I didn’t plan to be absolutely
 strict about the date, and while maps should basically be finished by then,
 that it was still OK to make updates after that. Some people interpreted
 this to mean that maps should be done but adjustments were still
 allowable, some went to the other extreme and thought that as long as
 you had a placeholder slot to signal your participation you could make
 major updates at any time.

 This meant the end of the project dragged out much longer than I had
 intended - it was two weeks past the intended finish date before I poked
 the last of the mappers into declaring their maps out of WIP state, and by
 the end of that period I was feeling guilty about the amount of leeway I’d
 given to some people to make updates when other people had got their
 maps in by the finish date. However, I wouldn’t have felt it fair to cut
 people off suddenly when I hadn’t initially given a cutoff date, so I feel the
 best way to avoid this is simply to be clearer about the deadlines next
 time around.

 72

 Conclusion

 You might not believe it from reading the amount of suffering and
 heartache above, but I loved hosting RAMP and I’ll certainly bring it back
 as a yearly event for as long as people aren’t sick of it! I’m grateful for the
 experience not just in my experiments with continuous integration for
 Doom, but for accidentally becoming a ZScript convert and learning
 lessons about how to handle an online community.

 That community was made up of Doom mappers of all ages, tastes and
 levels of experience, and the variety of approaches that people took to
 maps was incredible - from vanilla-styled techbases and hellish caves and
 castles to OTEX behemoths and strange voids, from running and gunning
 either hell fodder or the custom Ultra Cyberdemon to a Crystal Maze-style
 challenge map and a bizarre rhythm game. The goal was simply to try
 new ideas - making a map for the first time, experimenting with a new
 map format, or anything that the author wanted - and to have finished with
 such a showcase is truly amazing. I was pleasantly surprised that RAMP
 got a special mention in the 2021 Cacowards 12 exactly because of this
 breadth and sense of community.

 If you’re thinking about running a community project of your own, I hope
 that this book has been helpful in showing some pitfalls and successes. I
 also want to recommend the excellent thread started by MFG38 on the
 Doomworld forums on how to host a community project 13 - multiple people
 have contributed their experiences and it has some vital details on how to
 set people’s expectations and define limits so that your own project gets
 to completion instead of being forgotten about.

 RAMPART is also available for use by anyone who wants it 14 - since
 RAMP I’ve set up three instances for other people to run their projects on,
 and features have been added to allow projects of types other than a hub
 and spoke model - it now offers more control over the layout of levels

 14 https://github.com/davidxn/rampart
 13 https://www.doomworld.com/forum/topic/121977
 12 https://www.doomworld.com/cacowards/2021/special/

 73

 through MAPINFO properties, and setting up specific level slots for
 people to upload into instead of just accepting new levels and putting
 them on the end. It also supports writing the project out to a WAD file, so
 it could theoretically even be used for vanilla projects (though I admit I
 haven’t yet tested this). I would really like to see it used more widely
 because I still see so many community projects struggling to be organized
 exclusively through a forum thread!

 Thanks to everyone who contributed to this unexpectedly massive project,
 and especially to those who spent time giving feedback, advice and
 guidance to others. It was wonderful to see people's efforts, and I'm very
 happy that some of these maps have already been turned into the basis
 for episodes or larger projects because their authors didn't want to stop.
 As long as the influx of new mappers continues, Doom will never die!

 - DavidN

 74

